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Abstract—Codes that correct asymmetric errors have impor-
tant applications in storage systems, including flash memories
and phase-change memories. The construction of asymmetric
error correcting codes is a topic that was studied extensively,
however, the existing approach for code construction is similar
to the approach taken in the construction of symmetric error
correcting codes, namely, it assumes that every codeword could
sustain t asymmetric errors. Our main observation is that in
contrast to symmetric errors, where the error probability of a
codeword is context independent (since the error probability for
1s and 0s is identical), asymmetric errors are context dependent.
For example, the all-1 codeword has a higher error probability
than the all-0 codeword (since the only errors are 1 → 0). We
call the existing codes uniform codes while we focus on the
notion of nonuniform codes, namely, codes whose codewords
can tolerate different numbers of asymmetric errors depending
on their Hamming weights. We prove an almost explicit upper
bound on the size of nonuniform asymmetric error correcting
codes and present two general constructions. We also study the
rate of nonuniform codes compared to uniform codes and show
that there is a potential performance gain.

Index Terms—Nonuniform codes, Asymmetric errors, Data
storage, Bounds and constructions, Asymptotic efficiency.

I. INTRODUCTION

ASYMMETRIC error-correcting codes have important ap-
plications in storage and communication systems, such

as flash memories [1], phase-change memories, and optical
communications. In such systems, the error probability from
1 to 0 is significantly higher than the error probability from
0 to 1, which is modeled by binary asymmetric channel (the
Z−channel) where the transmitted sequences only suffer one
type of errors, say 1 → 0. Asymmetric error-correcting codes
have been widely studied: In [2], Kløve summarized and
presented several such codes. In addition, a large amount of
effort is contributed to the design of systematic codes [3],
[4], constructing single or multiple error-correcting codes [5],
[6], increasing the lower bounds [7]–[10] and applying LDPC
codes in the context of asymmetric channels [11].

However, the existing approach for code construction is
similar to the approach taken in the construction of symmetric
error correcting codes, namely, it assumes that every code-
word could sustain t asymmetric errors. As a result, different
codewords might have different reliability. To see this, let’s
consider errors to be i.i.d., where every bit that is a 1 can
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Fig. 1. The relation between Pt(x) and w(x) when p = 0.1 and t = 2.

change to a 0 by an asymmetric error with crossover proba-
bility p > 0. For a codeword x = (x1, x2, . . . , xn) ∈ {0, 1}n,
let w(x) = |{i : 1 ≤ i ≤ n, xi = 1}| denote the Hamming
weight of x. Then the probability for x to have at most t
asymmetric errors is Pt(x) = P (t, w(x), p), where

P (t,m, p) ,
t∑

i=0

(
m

i

)
pi(1− p)m−i.

Since x can correct t errors, Pt(x) is the probability of
correctly decoding x (assuming codewords with more than
t errors are uncorrectable). It can be readily observed that
the reliability of codewords decreases when their Hamming
weights increase, see Fig. 1 as an instance.

In some applications, like telecommunications, whose goal
is to minimize the expected error probability of transmissions,
it is fine to let codewords have different reliability. But when
we are considering some other applications, like data storage,
we need to consider the worst-case performance, namely, we
need guarantee that every codeword can be correctly decoded
with very high probability. In this case, it is not desired to
let all the codewords tolerate the same number of asymmetric
errors, since the codeword with the highest Hamming weight
will become a ‘bottleneck’ and limit the code rate.

This motivated us to propose the concept of nonuniform
codes, whose codewords can tolerate different numbers of
asymmetric errors based on their Hamming weights. The
objective is to guarantee the reliability of every codeword.
That is, we consider the worst-case instead of the average-case
reliability of the codewords. Given this constraint, we would
like to maximize the size of the code. Specifically, let qe < 1
to be maximal tolerated error probability for each codeword
and let t(x) denote the number of asymmetric errors that x
can correct. Then given a code C, for every codeword x ∈ C,
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we have P (t(x), w(x), p) ≥ 1 − qe, so that every erroneous
codeword can be corrected with probability at least 1 − qe.
For such a code that satisfies the above constraint, we call it
a nonuniform (n, p, qe) code.

As comparison, most existing error-correcting codes are uni-
form codes, where every codeword has to sustain t asymmetric
errors. For a code C of codeword length n, the Hamming
weight of its codewords is at most n. (And in many existing
asymmetric error-correcting codes, the maximum codeword
weight indeed equals n [2].) Given the worst-case constraint
and the maximal tolerated error probability qe, we need to set
t large enough that P (t, n, p) ≥ 1 − qe. In this case, we call
the code as an uniform (n, p, qe) code.

In this paper, we demonstrate that given the same parameters
(n, p, qe), nonuniform codes are much more efficient than
uniform codes. The rest of the paper is organized as follows.
In Section II, we provide some definitions and properties
related to nonuniform codes. In Section III, we give an almost
explicit upper bound for the size of nonuniform codes. Two
general constructions, based on multiple layers or bit flips,
are proposed in Section IV and Section V. Finally, Section VI
studies the asymptotic rates of nonuniform codes and uniform
codes (both upper bounds and lower bounds), followed by the
concluding remarks in Section VII.

II. BASIC PROPERTIES

According to our definitions, for a nonuniform (n, p, qe)
code C, each codeword x in it has to correct at least t(w(x))
asymmetric errors , where

t(w) = min{s ∈ N |P (s, w, p) ≥ 1− qe}.

The maximum size of a nonuniform (n, p, qe) code is denoted
by Bβ(n, p, qe).

If C is an uniform (n, p, qe) code, then each codeword in
C can correct t asymmetric errors, where

t = t(n) = min{s ∈ N |P (s, n, p) ≥ 1− qe}.

The maximum size of an uniform (n, p, qe) code is denoted
by Bα(n, p, qe).

Lemma 1. For any 0 < p, qe < 1 and 0 ≤ w ≤ n, 0 ≤
t(w + 1)− t(w) ≤ 1.

Proof: We know

P (k,w, p) =
k∑

i=0

(
w

i

)
pi(1− p)w−i

= (w − k)

(
w

k

)∫ 1−p

0

tw−k−1(1− t)kdt

which leads us to

P (k,w, p)− P (k,w + 1, p)

=
k + 1

w + 1
[P (k + 1, w + 1, p)− P (k,w + 1, p)] (1)

(1) First, let’s prove that t(w + 1) ≥ t(w). Since

P (k + 1, w + 1, p)− P (k,w + 1, p) > 0

we have P (k,w, p) > P (k,w + 1, p).

We know that P (t(w + 1), w + 1, p) ≥ 1− qe, so

P (t(w + 1), w, p) > 1− qe

According to definition of t(w), we can conclude that t(w +
1) ≥ t(w).

(2) Let’s prove that t(w + 1) − t(w) ≤ 1. Based on Equ.
(1), we have

P (k,w, p)− P (k + 1, w + 1, p)

=
w − k

w + 1
[P (k,w + 1, p)− P (k + 1, w + 1, p)]

So P (k,w, p) < P (k + 1, w + 1, p).
We know that P (t(w), w, p) ≥ 1− qe, therefore

P (t(w) + 1, w + 1, p) > 1− qe

According to the definition of t(w + 1), we have t(w + 1) ≤
t(w) + 1.

Given two binary vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn), we say x ≤ y if and only if xi ≤ yi for all
1 ≤ i ≤ n. Let Ss(x) be the set of vectors obtained by
changing at most s 1’s in x into 0’s, i.e.,

Ss(x) = {v ∈ {0, 1}n|v ≤ x and N(x,v) ≤ s}.

where
N(x,y) , |{i : xi = 1, yi = 0}|

Let Ss′,s(x) be the set of vectors obtained by changing at
most s′ 0’s in x into 1’s or at most s 1’s in x into 0’s, i.e.,

Ss′,s(x) = {v ∈ {0, 1}n|v ≤ x and N(x, v) ≤ s}∪
{v ∈ {0, 1}n|x ≤ v and N(v, x) ≤ s′}

Note that Ss(x) = S0,s(x).
The following properties of nonuniform codes can be easily

proved, as the generalizations of those for uniform codes,
including Lemmas 2.2, 2.3, 3.2, 3.3 in [2].

Lemma 2. Code C is a nonuniform (n, p, qe) code if and
only if St(x)(x)

∩
St(y)(y) = ø for all x,y ∈ C with x ̸= y.

Proof: According to the definition of nonuniform codes,
all the vectors in St(x)(x) can be decoded as x, and al-
l the vectors in St(y)(y) can be decoded as y. Hence,
St(x)(x)

∩
St(y)(y) = ø for all x,y ∈ C.

Lemma 3. Let C be a nonuniform (n, p, qe) code. If x,y ∈ C
with x ̸= y, then Ss,t(x)−s(x)

∩
Ss,t(y)−s(y) = ø for all

0 ≤ s ≤ min(t(x), t(y)).

Proof: Let us prove this by contradiction. Assume that
there exists v ∈ Ss,t(x)−s(x)

∩
Ss,t(y)−s(y).

If v ∈ Ss,0(x)
∩

Ss,0(y), then we let u = u1u2 . . . un ∈
{0, 1}n such that ui = min{xi, yi} for 1 ≤ i ≤ n. It is not
hard to prove that N(x,u) ≤ N(v,y) ≤ s, and N(y,u) ≤
N(v,x) ≤ s. As a result, we have u ∈ Ss(x)

∩
Ss(y) ⊆

St(x)(x)
∩

St(y)(y). According to the lemma above, C is not
a nonuniform (n, p, qe) code, which is a contradiction.

If v ∈ S0,t(x)−s

∩
S0,t(y)−s(y), then we have that v ∈

St(x)(x)
∩

St(y)(y). So C is not a nonuniform (n, p, qe) code,
which is a contradiction.
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If v ∈ Ss,0(x)
∩

S0,t(y)−s(y), then N(y,x) ≤ N(v,x) +
N(y,v) ≤ s + (t(y) − s) = t(y) and x ≤ v ≤ y, so x ∈
St(x)(x)

∩
St(y)(y) and C is not a nonuniform (n, p, qe) code.

Similarly, when v ∈ S0,t(x)−s(x)
∩
Ss,0(y), we have the same

result.
This completes the proof.

Lemma 4. There always exists a nonuniform (n, p, qe) code
of the maximum size that contains the all-zero codeword.

Proof: Let C be a nonuniform (n, p, qe) code, and assume
that 00...00 /∈ C. If there exists a codeword x ∈ C such
that 00...00 ∈ St(x)(x), then we can get a new nonuniform
(n, p, qe) code C ′ of the same size by replacing x with 00...00
in C. If there does not exist a codeword x ∈ C such that
00...00 ∈ St(x)(x), then we can get a larger nonuniform
(n, p, qe) code C ′ by adding 00...00 to C.

Given a nonuniform code C, let Cr denote the number of
codewords with Hamming weight r in C, i.e.

Cr = |{x ∈ C|w(x) = r}|.

Lemma 5. Let C be a nonuniform (n, p, qe) code. For 0 ≤
r ≤ n, let s be an integer such that 0 ≤ s ≤ t(r − s) and let
k = max{z|0 ≤ z ≤ n, z − (t(z)− s) ≤ r}, then we have

s∑
j=1

(
n− r + j

j

)
Cr−j +

t(k)−s∑
j=0

(
r + j

j

)
Cr+j ≤

(
n

r

)
.

Proof: If x ∈ C and w(x) = r − j with 1 ≤ j ≤ s, then
Ss,t(x)−s(x) contains

(
n−r+j

j

)
vectors of weight r. If x ∈ C

with w(x) = r + j and 0 ≤ j ≤ t(k) − s, then Ss,t(x)−s(x)

contains
(
r+j
j

)
vectors of weight r. According to Lemma 3,

we know that
∪

x∈C,w(x)=r Ss,t(x)−s(x) is a disjoint union,
so the number of vectors in

∪
x∈C,w(x)=r Ss,t(x)−s(x) is

s∑
j=1

(
n− r + j

j

)
Cr−j +

t(k)−s∑
j=0

(
r + j

j

)
Cr+j

which is at most
(
n
r

)
. The lemma follows.

Note that in Lemma 5, if we let s = 0, then we can get

t(k)∑
j=0

(
r + j

j

)
Cr+j ≤

(
n

r

)
(2)

where k = max{z|0 ≤ z ≤ n, z − t(z) ≤ r}. This inequality
will be used to get an almost explicit upper bound for the size
of nonuniform codes.

III. UPPER BOUNDS

In this section, we first present some existing results on
the upper bounds of Bα(n, p, qe) for uniform codes. Then
we derive an almost explicit upper bound of Bβ(n, p, qe) for
nonuniform codes, and compare it with the almost explicit
upper bound of uniform codes given by Kløve.

A. Upper Bounds for Uniform Codes

For uniform codes of the maximum size, the value of t is
uniquely determined by n, p and qe, such that t is the minimum
integer satisfying the condition P (t, n, p) ≥ 1− qe. Hence we
can also express Bα(n, p, qe) as Bα(n, t) such that

t = min{s ∈ N |P (s, n, p) ≥ 1− qe}.

An explicit upper bound to Bα(n, t) was given by Var-
shamov [12]. Borden showed that Bα(n, t) is upper bounded
by min{A(n+t, 2t+1), (t+1)A(n, 2t+1)} [2], where A(n, d)
is the maximal number of vectors in {0, 1}n with Hamming
distance at least d. Goldbaum pointed out that the upper
bounds can be obtained using integer programming. By adding
more constrains to the integer programming, the upper bounds
were later improved by Delsarte and Piret [19] and Weber et
al. [14] [20]. Kløve generalized the bounds of Delsarte and
Piret, and gave an almost explicit upper bound which is very
easy to compute by relaxing some of the constrains [16], in
the following way.

Theorem 6. [16] For n > 2t ≥ 2, let y0, y1, ..., yn be defined
by

1) y0 = 1
2) yr = 0, ∀1 ≤ r ≤ t
3) yt+r = 1

(t+r
t )

[
(
n
r

)
−
∑t−1

j=0 yr+j

(
r+j
j

)
],∀1 ≤ r ≤ n

2 − t

4) yn−r = yr, ∀0 ≤ r < n
2

Then Bα(n, t) ≤ Mα(n, t) ,
∑n

r=0 yr.

This method obtains a good upper bound to Bα(n, t)
(although it is not the best known one). Since it is very
easy to compute, when n and t are large, it is every useful
for analyzing the sizes of uniform codes. In the rest of this
section, we will derive a similar almost explicit upper bound
for nonuniform codes and compare them with each other.

B. Upper Bounds for Non-uniform Codes

We now derive an almost explicit upper bound for the size of
nonuniform codes, followed the idea of Kløve [16] for uniform
codes. First, we define

h(r) = max{w|0 ≤ w ≤ n,w − t(w) = r},

h(r) = min{w|0 ≤ w ≤ n,w − t(w) = r}.

And let Mβ(n, p, qe) = max
∑n

r=0 zr, where the maximum is
taken over the following constraints:

1) zr are non-negative real numbers;
2) z0 = 1;
3)

∑t(h(r))
j=0

(
r+j
j

)
zr+j ≤

(
n
r

)
for r ≥ 0.

Then Mβ(n, p, qe) is an upper bound for Bβ(n, p, qe). Here,
condition 2) is given by Lemma 4, and condition 3) is given
by Equ. (2) from Lemma 5. Our goal in this section is to find
an almost explicit way to express Mβ(n, p, qe).

Lemma 7. Assume
∑n

r=0 zr is maximized over z0, z1, ..., zn
in the problem above. Let

Zr =

min{n−r,t(h(r))}∑
j=0

zr+j

(
r + j

j

)
.
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Then Zr =
(
n
r

)
for r ≤ n− t(n).

Proof: Suppose that Zr <
(
n
r

)
for some r ≤ n − t(n).

Let g = h(r) and k = min{w|zw > 0, w > g}.
Let m = max{w|k − t(k) > w}. Then we first prove that

for all r < w ≤ m, Zw <
(
n
w

)
. In order to prove this, we let

s = w − r, and get

Zw =

t(h(w))∑
j=0

zw+j

(
w + j

w

)

=

g−r−s∑
j=0

zr+s+j

(
r + s+ j

r + s

)

=

t(g)∑
j=s

zr+j

(
r + j

r + s

)

=

t(g)∑
j=s

zr+j

(
r + j

r

) (
j
s

)(
r+s
s

)
≤

(
t(g)
s

)(
r+s
s

) t(g)∑
j=s

zr+j

(
r + j

r

)

<

(
t(g)
s

)(
r+s
s

)(n
r

)
=

t(g) ∗ ... ∗ (t(g)− s+ 1)

(n− r) ∗ ... ∗ (n− r − s+ 1)

(
n

r + s

)
≤

(
n

w

)
.

Now, we construct a new group of real numbers
z∗0 , z

∗
1 , ..., z

∗
n such that

1) z∗g = zg +∆
2) z∗k = zk − δ
3) z∗r = zr for r ̸= h, r ̸= k

with

∆ = min({
(
n
w

)
− Zw(
g
w

) |r ≤ w ≤ m}
∪

{
(
k
w

)(
g
w

)zk|m < w ≤ g}),

δ =
1

min{ (
k
w)
(g
w)

|m < w ≤ g}
∆.

For such ∆, δ, it is not hard to prove that Z∗
r =

(
n
r

)
for

0 ≤ r ≤ n. On the other hand,
n∑

r=0

z∗r =
n∑

r=0

zr +∆− δ >
n∑

r=0

zr,

which contradicts our assumption that
∑n

r=0 zr is maximized
over the constrains. So the lemma is true.

Lemma 8. Assume
∑n

r=0 zr is maximized over z0, z1, ..., zn
in the problem above. Let

Yr =

min{n−r,t(h(r))}∑
j=0

zr+j

(
r + j

j

)
.

Then Yr =
(
n
r

)
for r ≤ n− t(n).

Sketch of Proof: If h(r) = h(r), then the lemma is true. So
we only need to prove it for the case that h(r) > h(r). Similar
to Lemma 7, to get the contradiction, we can construct a new
group of real numbers z∗0 , z

∗
1 , ..., z

∗
n such that

1) z∗h(r) = z∗h(r) +∆

2) z∗w = 0 for h(r) < w ≤ h(r)
3) z∗r = zr if w /∈ [h(r), h(r)]

with

∆ = min{
∑h(r)

j=h(r)+1

(
j
w

)
zj(

h(r)
w

) |r ≤ w ≤ h(r)}.

For this z∗0 , z
∗
1 , ..., z

∗
n, they satisfy all the constrains and

Y ∗
r =

(
n
r

)
for r ≤ n − t(n). At the same time, it can be

proved that
n∑

r=0

z∗r >
n∑

r=0

zr

which contradicts with our assumption that
∑n

r=0 zr is max-
imized over the constrains. This completes the proof.

Now let y0, y1, ..., yn be a group of optimal solutions
to z0, z1, ..., zn that maximize

∑n
r=0 zr. Then y0, y1, ..., yn

satisfy the condition in Lemma 8. We see that y0 = 1. Then
based on Lemma 8, we can get y1, ..., yn uniquely by iteration.
Hence, we have the following theorem for the upper bound
Mβ(n, p, qe).

Theorem 9. Let y0, y1, ..., yn be defined by
1) y0 = 1;
2) yr = 0, ∀1 ≤ r ≤ max{s|1 ≤ s ≤ n, s ≤ t(s)};
3) yr = 1

( r
t(r))

[
(

n
r−t(r)

)
−
∑t(r)

j=1 yr−j

(
r−j

t(r)−j

)
],

∀max{s|1 ≤ s ≤ n, s ≤ t(s)} < r ≤ n.
Then Bβ(n, p, qe) ≤ Mβ(n, p, qe) =

∑n
r=0 yr.

This theorem provides an almost explicit expression for the
upper bound Mβ(n, p, qe), which is much easier to calculate
than the equivalent expression defined at the beginning of
this subsection. Note that in the theorem, we do not have
a constraint like the one (constraint 4) in Theorem 6. That
is because that the optimal non-unform codes usually do not
have symmetric weight distributions due to the fact that t(w)
monotonically increases with w.

C. Upper Bound Comparison

Given (n, p, qe), we can define the efficiency of uniform
codes as

ηα(n, p, qe) ,
log2 Bα(n, p, qe)

n

and define the efficiency of nonuniform codes as

ηβ(n, p, qe) ,
log2 Bβ(n, p, qe)

n

By the definition of uniform and nonuniform codes, it is simple
to see that ηβ(n, p, qe) ≥ ηα(n, p, qe).

In this subsection, we compare the upper bounds of
ηα(n, p, qe) and ηβ(n, p, qe), which are defined as Φα(n, p, qe)
and Φβ(n, p, qe) separately. Here, assume Mα(n, p, qe) is the
almost explicit upper bound for uniform codes obtained from
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(a) p = 0.01, qe = 0.001
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(b) p =
√
10/100 = 0.0316, qe = 0.001
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(c) p = 0.1, qe = 0.001
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(d) p =
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Fig. 2. Given p, qe, the values of Φα(n, p, qe) and Φβ(n, p, qe) for different codeword length n. Here, Φα(n, p, qe) is the upper bound of the efficiency
for uniform codes, and Φβ(n, p, qe) is the upper bound of the efficiency for nonuniform codes.

Theorem 6, and Mβ(n, p, qe) is the almost explicit upper
bound for nonuniform codes obtained from Theorem 9. Then
we have

Φα(n, p, qe) ,
logMα(n, p, qe)

n
,

Φβ(n, p, qe) ,
logMβ(n, p, qe)

n
.

The difference between Φα(n, p, qe) and Φβ(n, p, qe) implies
the efficiency improvement of nonuniform codes compared to
uniform codes.

Fig. 2 gives the values of Φα(n, p, qe) and Φβ(n, p, qe)
for different n with fixed (p, qe). Since the almost explicit
upper bound of uniform codes given by Kløve only works
for n ≥ 2 ∗ t(n), only the available interval is plotted. It
demonstrates that given the same parameters, the efficiency
(upper bound) of nonuniform codes is substantially greater
than that of uniform codes.

IV. CONSTRUCTIONS BASED ON MULTIPLE LAYERS

In [2], Kløve summarized some constructions of uniform
codes for correcting asymmetric errors. The code of Kim and
Freiman was the first code constructed for correcting multiple

asymmetric errors. Varshamov [17] and Constrain and Rao
[18] presented some constructions based group theory. Later,
Delsarte and Piret [19] proposed a construction based on
‘expurgating/puncturing’ with some improvements given by
Weber et. al. [20].

In this section, we propose a general construction of nonuni-
form codes based on multiple layers. Then we compare BCH
codes with layered BCH codes under the same parameters. It
shows that the sizes of the codes can be significantly increased
by equalizing the reliability of all the codewords.

A. Layered Codes
From the definition of nonuniform codes, we know that t(w)

can be easily and uniquely determined by p, qe. So a question
arises: if n, t(w) (for 0 ≤ w ≤ n) are given, how to construct a
nonuniform code efficiently? Intuitively, we can divide all the
codewords of a nonuniform code into at most t(n) + 1 layers
such that all the codewords in the ith layer (with 0 ≤ i ≤ t(n))
can tolerate at least i asymmetric errors. In other words, the
code is the combination of up to t(n) + 1 uniform codes,
each of which corrects a different number of asymmetric
errors. However, we cannot design such a code by constructing
codewords independently for different layers, because a simple
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combination of several independent codes may violate the
error correction requirements of the nonuniform codes, due
to the interference between two neighbor layers. Our idea is
simple: let’s first construct a code which can tolerate t(n)
asymmetric errors. Then we add some codewords to the lowest
t(n) layers such that the codewords in the top layer keep
unchanged and they still can tolerate t(n) asymmetric errors,
and the codewords in the other layers can tolerate up to t(n)−1
asymmetric errors. Iteratively, we can continue to add many
codeword into the lowest t(n)−1 layers ... Based on this idea,
given n, t(w), we construct layered codes as follows.

Theorem 10 (Layered Codes). Let k = t(n) and let
C0, C1, ..., Ck be k + 1 binary codes of codeword length n,
where C0 ⊃ C1 ⊃ ... ⊃ Ck and for 0 ≤ t ≤ k, the code Ct

can correct t asymmetric errors. Let

C = {x ∈ {0, 1}n|x ∈ Ct′(w(x))},

where

t′(w(x)) = t(max{w′|w′ − t(w′) ≤ w(x)}).

Then for all x ∈ C, x can tolerate t(w(x)) asymmetric errors.

Proof: We prove that for all x,y ∈ C with x ̸= y,
St(w(x))(x)

∩
St(w(y))(y) = ø. W.l.o.g., we assume w(x) ≥

w(y).
If w(x)− t(w(x)) > w(y), the conclusion is true.
If w(x) − t(w(x)) ≤ w(y) and w(x) ≥ w(y), we have

St(w(x))(x)
∩
St(w(y))(y) ⊆ St′(w(y))(x)

∩
St′(w(y))(y).

However, we know that x ∈ Ct′(w(x)) ⊆ Ct′(w(y)) and
y ∈ Ct′(w(y)), therefore St′(w(y))(x)

∩
St′(w(y))(y) = ø.

Furthermore, we have St(w(x))(x)
∩
St(w(y))(y) = ø.

We see that the constructions of layered codes are based
on the provided group of codes C0, C1, ..., Ck such that C0 ⊃
C1 ⊃ ... ⊃ Ck and for 0 ≤ t ≤ k, the code Ct can correct t
asymmetric errors. Examples of such codes include Varshamov
codes [17], BCH codes, etc.

One construction of Varshamov codes can be described as
follows: Let α1, α2, ..., αn be distinct non-zero elements of
Fq , and let α := (α1, α2, ..., αn). For x = (x1, x2, ..., xn) ∈
{0, 1}n, let xα = (x1α1, x2α2, ..., xnαn). For g1, g2, ..., gt ∈
Fq and 0 ≤ t ≤ k, let

Ct := {x ∈ {0, 1}n|σl(xα) = gl for 1 ≤ l ≤ t}

where the elementary symmetric function σl(u) for l ≥ 0 are
defined by

r∏
i=1

(z + ui) =
∞∑
l=0

σl(u)z
r−l.

Then Ct can correct t asymmetric errors (for 0 ≤ t ≤ k), and
C0 ⊃ C1 ⊃ ... ⊃ Ck.

Such a group of codes can also be constructed by BCH
codes: Let (α0, α1, ..., αn−1) be n distinct nonzero elements
of G2m with n = 2m − 1. For 0 ≤ t ≤ k, let

Ct := {x ∈ {0, 1}n|
n∑

i=1

xiα
(2l−1)
i = 0 for 1 ≤ l ≤ t}.

In the above examples, assume x is a codeword in Ct and
y = x + e is a received word with error e, then there is

an efficient algorithm to decode y into a codeword, which
is denoted by Dt(y). If y has at most t asymmetric errors,
then Dt(y) = x. In the following theorem, we show that the
layered codes proposed above also have an efficient decoding
algorithm if Dt(·) (for 0 ≤ t ≤ k) are provided and efficient.

Theorem 11 (Decoding of Layered Codes). Let C be a
layered code, let x ∈ C be a codeword, and let y = x+ e be
a received word such that |e| = N(x,y) ≤ t(w(x)). (Here e
is the asymmetric-error vector.) Then there exists at least one
integer t such that

1) t′(w(y)) ≤ t ≤ t′(w(y) + t′(w(y)));
2) Dt(y) ∈ C;
3) y ≤ Dt(y) and N(Dt(y),y) ≤ t(w(Dt(y))).

For such t, we have Dt(y) = x.

Proof: If we let t = t′(w(x)), then we can get that t
satisfies the conditions and Dτ (y) = x. So such t exists.

Now we only need to prove that once there exists t satis-
fying the conditions in the theorem, we have Dt(y) = x. We
prove this by contradiction. Assume there exists t satisfying
the conditions but z = Dt(y) ̸= x. Then N(z,y) ≤ t(w(z))
and N(x,y) ≤ t(w(x)), which contradicts the property of the
layered codes.

According to the above theorem, to decode a noisy word y,
we can check all the integers between t′(w(y)) and t′(w(y)+
t′(w(y))) to find the value of t. Once we find the integer t
satisfying the conditions in the theorem, we can decode y into
Dt(y) directly. (Note that t′(w(y) + t′(w(y))) − t′(w(y))
is normally much smaller than w(y). It is approximately

p2

(1−p)2w(y) when w(y) is large.) We see that this decoding
process is efficient if Dt(.) is efficient for 0 ≤ t ≤ k.

B. BCH codes vs. Layered BCH Codes

Typically, non-linear codes, like Varshamov codes are su-
perior to BCH codes. But there are no evidences showing that
the gap of efficiencies between them is very large [17]. On the
other hand, it is not easy to study the properties of non-linear
codes, such as their weight distributions. In this subsection, we
compare BCH codes with layered BCH codes (layered codes
based on BCH codes) under the same parameters (n, p, qe).

First, for a BCH code of length n = 2m − 1 over G2m , if
it has to correct t errors such that

t = min{s ∈ N |P (s, n, p) ≥ 1− qe}

then it has about 2n

(n+1)t codewords.
Next, for a layered BCH code of length n = 2m − 1 over

G2m , the codewords with Hamming weight w have to correct
t(w) asymmetric errors such that

t(w) = min{s ∈ N |P (s, t(w), p) ≥ 1− qe}

If we can know the weight distribution for BCH codes, then
the sizes of the layered BCH codes can be obtained by
summing up the numbers of codewords with different weights.
It is known that the weight distribution of binary primitive
BCH codes can be approximated by the binomial distribution.
Considering a BCH code with length n = 2m − 1 and with
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Fig. 3. The estimated rates of BCH codes and layered BCH codes with
different p when n = 255 and qe = 10−4.

minimum distance 2t+1 ≤ 2[(m+1)/2]+1, if bi is the number
of codewords with weight i in this code, then [22]

bi =

(
n
i

)
(n+ 1)t

(1 + Ei)

with |Ei| decreases with n. Here, for simplicity, given a BCH

code, we use (ni)
(n+1)t to approximate bi for 0 ≤ i ≤ n.

Based on the approximations above, Fig. 3 plots the estimat-
ed rates of BCH codes and layered BCH codes with variable
p when n = 255 and qe = 10−4. Here, for a code C, let #C
be the number of codewords, then the rate of C is defined as
log2(#C)

n . From this figure, we see that the rate of BCH codes
is a step function of p, that is because t is a step function of
p when n and qe are fixed. It demonstrates that under the
same parameters (n, p, qe), the rate of layered BCH codes
is much higher than that of BCH codes. It implies that by
constructing nonuniform codes instead of uniform codes, we
can significantly increase the code efficiency.

V. CONSTRUCTIONS BASED ON FLIPS

Many non-linear codes designed to correct asymmetric
errors do not yet have efficient encoding algorithms. Namely,
it is not easy to find an efficient encoding function f :
{0, 1}k → C with k w ⌊log |C|⌋. On the other hand, in [17],
Varshamov showed that linear codes have nearly the same
ability to correct asymmetric errors and symmetric errors (for
the uniform code case). In this subsection, we focus on the
approach of designing nonuniform codes for asymmetric errors
with efficient encoding schemes, by utilizing the well studied
linear codes for symmetric errors.

We can use a linear code to correct t(n) asymmetric errors
directly, but this method is inefficient not only because the
decoding sphere for symmetric errors is greater than the sphere
for asymmetric errors (and therefore an overkill), but also
because for low-weight codewords, the number of asymmetric
errors they need to correct can be much smaller than t(n).

Our idea is to build a “flipping code” that uses only
low-weight codewords (specifically, codewords of Hamming
weight no more than ∼ n

2 ), because they need to correct fewer
asymmetric errors and therefore can increase the code’s rate. In
the rest of this section, we present two different constructions.

A. First Construction

First, construct a linear code C (like BCH codes) of length
n with generator matrix G that corrects t(⌊n

2 ⌋) symmetric
errors. Assume the dimension of the code is k. For any binary
message u ∈ {0, 1}k, we can map it to a codeword x in C such
that x = uG. Next, let x denote a word obtained by flipping
all the bits in x such that if xi = 0 then xi = 1 and if xi = 1
then xi = 0; and let y denote the final codeword corresponding
to u. We check whether w(x) > ⌊n

2 ⌋ and construct y in the
following way:

y =

{
x00...0 if w(x) > ⌊n

2 ⌋
x11...1 otherwise

Here, the auxiliary bits (0’s or 1’s) are added to distinguish that
whether x has been flipped or not, and they form a repetition
code to tolerate errors.

The corresponding decoding process is straightforward:
Assume we received a word y′. If there is at least one 1 in the
auxiliary bits, then we “flip” the word by changing all 0’s to
1’s and all 1’s to 0’s; otherwise, we keep the word unchanged.
Then we apply the decoding scheme of the code C to the first
n bits of the word. Finally, the message u can be successfully
decoded if y′ has at most t(⌊n

2 ⌋) errors in the first n bits.

B. Second Construction

In the previous construction, several auxiliary bits are need-
ed to protect one bit of information, which is not very efficient.
In this section, we try to move this bit into the message part of
the codewords in C. This motivates us to give the following
construction.

Let C be a linear code with length n that corrects t′ sym-
metric errors (we will specify t′ later). Assume the dimension
of the code is k. Now, for any binary message u ∈ {0, 1}k−1

of length k − 1, we get u′ = 0u by adding one bit 0 in front
of u. Then we can map u′ to a codeword x in C such that

x = (0u)G = 0uv

where G is the generator matrix of C in systematic form and
the length of v is n− k. Let α be a codeword in C such that
the first bit α1 = 1 and its weight is the maximal one among
all the codeword in C, i.e.,

α = arg max
x∈C,x1=1

w(x)

Generally, w(α) is very close to n. In order to reduce the
weights of the codewords, we use the following operations:
Calculate the relative weight

w(x|α) = |{1 ≤ i ≤ n|xi = 1, αi = 1}|

Then we get the final codeword

y =

{
x+ α if w(x|α) > w(α)

2
x otherwise

where + is the binary sum, so x + α is to flip the bits in x
corresponding the ones in α. So far, we see that the maximal
weight for y is ⌊n− w(α)

2 ⌋. That means we need to select t′

such that
t′ = t(⌊n− w(α)

2
⌋).
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In the above encoding process, for different binary mes-
sages, they have different codewords. And for any codeword
y, we have y ∈ C. That is because either y = x or y = x+α,
where both x and α are codewords in C and C is a linear code.
The decoding process is very simple: Given the received word
y′ = y + e, we can always get y by applying the decoding
scheme if |e| ≤ t′. If y1 = 1, that means x has been flipped
based on α, so we have x = y + α; otherwise, x = y. Then
the initial message u = x2x3...xk.

We see that the second construction is a little more efficient
than the first one, by moving the ‘flipping’ bit from the outside
of a codeword (of an error-correcting code) to the inside. Here
is an example of the second construction: Let C be the (7, 4)
Hamming code, which is able to correct single-bit errors. The
generating matrix of the (7, 4) Hamming code is

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


Here we have t′ = 1 and k = 4. Assume the binary message
is u = 011, then we have x = (0u)G = 0011100. It is easy to
see that α is the all-one codeword, i.e., α = 1111111. In this
case, w(x|α) <= w(α)

2 , so the final codeword y = 0011100.
Assume the binary message is u = 110, then we have x =
(0u)G = 0110110. In this case, w(x|α) > w(α)

2 , so the final
codeword y = x+ α = 1001001.

Assume the received word is y′ = 0001001. By applying the
decoding algorithm of Hamming codes, we get y = 1001001.
Since y1 = 1, we have x = y + α, and as a result, x = 110.

C. Comments

When n is sufficiently large, the codes based on flips above
become nearly as efficient as a linear codes correcting t(⌊n

2 ⌋)
symmetric errors. (We define the codes’ efficiency in Section
VI.) It is much more efficient than designing a linear code
correcting t(n) symmetric errors. Note that when n is large
and p is small, these codes can have very good performance
on efficiency. That is because when n is sufficiently large,
the efficiency of an optimal nonuniform code is dominated
by the codewords with the same Hamming weight wd (≤ n

2 ),
and wd approaches n

2 as p gets close to 0. We can intuitively
understand it based on two facts when n is sufficiently large:
(1) There are at most n2n(H(

wd
n )+δ) codewords in this optimal

nonuniform code. (2) When p becomes small, we can get a
nonuniform code with at least 2n(1−δ) codewords. So when n
is sufficiently large and p is small, we have wd → n

2 . Hence,
the optimal nonuniform code has almost the same asymptotic
efficiency with an optimal weight-bounded code (Hamming
weight is at most n/2), which corrects t(n/2) errors.

Beside simplicity and efficiency, another advantage of these
codes is that they do not require the Z-channel to be perfect,
i.e., it is allowed to have 0 → 1 errors with very small
probability (as long as this probability is smaller than the
probability of 1 → 0 errors). All these properties make these
codes very useful in practice.

VI. ASYMPTOTIC EFFICIENCIES

In this section, given 0 < p, qe < 1, we study the asymptotic
behavior of ηα(n, p, qe) and ηβ(n, p, qe) as n → ∞, i.e.,
limn→∞ ηα(n, p, qe) and limn→∞ ηβ(n, p, qe). By the defini-
tion of nonuniform and uniform codes, the ‘balls’ containing
up to t(x) (or t) errors that are centered at codewords x need
to be disjoint.

Before giving the asymptotic efficiencies, we first present
the following known result: For any δ > 0, when n is large
enough, we have

2n(H( k
n )−δ) ≤

(
n

k

)
≤ 2n(H( k

n )+δ)

where H(p) is the entropy function with

H(p) = p log
1

p
+ (1− p) log

1

1− p
for 0 ≤ p ≤ 1

and
H(p) = 0 for p > 1 or p < 0

Lemma 12. Let A(n, d, w) be the maximum size of a constant-
weight binary code of codeword length n, whose Hamming
weight is w and minimum distance is d. Let R(n, t, w) be
the maximum size of a binary code with Hamming weight w
and codeword length n where every codeword can correct t
asymmetric errors. Then

R(n, t, w) = A(n, 2(t+ 1), w).

Proof: Let C be a code of length n, constant weight w and
size R(n, t, w) that corrects t asymmetric errors. ∀x,y ∈ C,
by Lemma 2, we know that St(x)

∩
St(y) = ø.

Let u = (u1, . . . , un) be a vector such that ui =
min{xi, yi} for 1 ≤ i ≤ n. Then N(x,u) = N(y,u) and
u /∈ St(x)

∩
St(y). W.l.o.g, suppose that u /∈ St(x). Then

N(x,u) > t, and the Hamming distance between x and y is

d(x,y) = N(x,u) +N(y,u) ≥ 2(t+ 1).

So the minimum distance of C is at least 2(t+1). As a result,
A(n, 2(t+ 1), w) ≥ R(n, t, w).

On the other hand, if a constant-weight code has minimum
distance at least 2(t + 1), it can correct t asymmetric errors.
As a result, R(n, t, w) ≥ A(n, 2(t+ 1), w).

A. Bounds of limn→∞ ηα(n, p, qe)

Let’s first give the lower bound of limn→∞ ηα(n, p, qe) and
then provide the upper bound.

Theorem 13 (Lower bound). Given 0 < qe < 1, if 0 < p ≤ 1
4 ,

we have
ηα(n, p, qe)n→∞ ≥ 1−H(2p).

Proof: Based on the definition of uniform codes, we have
t = min{s|B(s, n, p) ≥ 1− qe}.

According to Hoeffding’s inequality, for any δ > 0, as n
becomes large enough, we have (p− δ)n ≤ t ≤ (p+ δ)n. Let
t = γn, when n is large enough, we have p− δ ≤ γ ≤ p+ δ.

Now let each codeword tolerate t asymmetric errors. Then

Bα(n, p, qe) = Bα(n, t) ≥ R(n, t, w) = A(n, 2(t+ 1), w)
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for every w with 0 ≤ w ≤ n. The Gilbert Bound gives that
(see Graham and Sloane [23])

A(n, 2(t+ 1), w) ≥
(
n
w

)∑t
i=0

(
w
i

)(
n−w

i

) .
Hence

Bα(n, p, qe) ≥ max
w

(
n
w

)∑t
i=0

(
w
i

)(
n−w

i

)
≥ max

w

(
n
w

)
nmaxi∈[0,t]

(
w
i

)(
n−w

i

)
≥ max

w:
w(n−w)

n >t

(
n
w

)
nmaxi∈[0,t]

(
w
i

)(
n−w

i

)
≥ max

w:
w(n−w)

n >t

(
n
w

)
n
(
w
t

)(
n−w

t

)
For a binomial term

(
n
k

)
= n!

k!(n−k)! and δ > 0, when n is
large enough,

2n(H( k
n )−δ) ≤

(
n

k

)
≤ 2n(H( k

n )+δ)

Let w = θn and t = γn with 0 ≤ θ, γ ≤ 1, as n becomes
large enough, we have

ηα(n, p, qe)

≥ 1

n
log max

θ:θ(1−θ)>γ

2(H(θ)−δ)n

n2(H( γ
θ )+δ)θn2(H( γ

1−θ )+δ)(1−θ)n

≥ max
θ:θ(1−θ)≥γ

H(θ)− θH(
γ

θ
)− (1− θ)H(

γ

1− θ
)− 2δ

+
1

n
log

1

n
Since θ(1 − θ) ≥ γ, we know that θ > γ > 0; then H(γθ )

is a continuous function of γ. As n becomes large, we have
p− δ ≤ γ ≤ p+ δ, so we can approximate H(γθ ) with H(pθ ).
Similarly, we can approximate H( γ

1−θ ) with H( p
1−θ ). Then

we can get

ηα(n, p, qe) & max
θ:θ(1−θ)>p

H(θ)− θH(
p

θ
)− (1− θ)H(

p

1− θ
).

If 0 ≤ p ≤ 1
4 , the maximum value can be achieve at θ∗ = 1

2 .
Hence we have ηα(n, p, qe)n→∞ ≥ 1−H(2p). This completes
the proof.

Theorem 14 (Upper Bound). Given 0 < p, qe < 1, we have

ηα(n, p, qe)n→∞ ≤ (1 + p)[1−H(
p

1 + p
)].

Proof: For an uniform (n, p, qe) code correcting t asym-
metric errors, we have the following observations:

1) There is at most one codeword of Hamming weight not
more than t;

2) For t + 1 ≤ w ≤ n, the number of codewords of
Hamming weight w is at most ( n

w−t)
(wt )

.

Consequently, the total number of codewords is

Bα(n, p, qe) ≤ 1 +
n∑

w=t+1

(
n

w−t

)(
w
t

)
= 1 +

n∑
w=t+1

(
n+t
w

)(
n+t
t

) ≤ 2n+t(
n+t
t

) .

So when n is sufficiently large, we have

ηα(n, p, qe) ≤ 1

n
log[

2n+t(
n+t
t

) ]
≤ 1

n
log

2(1+γ)n

2H( γ
1+γ )(1+γ)n

= (1 + γ)−H(
γ

1 + γ
)(1 + γ)

∼ (1 + p)[1−H(
p

1 + p
)]

where the last step is due to the continuousness of (1 + γ)−
H( γ

1+γ )(1 + γ) over γ.
We see that when n → ∞, ηα(n, p, qe) does not depends on

qe as long as 0 < qe < 1. That is because that when n → ∞,
we have t → pn, which does not depend on qe. This property
is also hold by ηβ(n, p, qe) when n → ∞.

B. Bounds of limn→∞ ηβ(n, p, qe)

In this subsection, we study the bounds of the asymptotic
efficiency of nonuniform codes. Here, we use the same idea
as that for uniform codes, except we need also prove that the
‘edge effect’ can be ignored, i.e., the number of codewords
with Hamming weight w ≪ n does not affect the final result.

Theorem 15 (Lower bound). Given 0 < p, qe < 1, we have

ηβ(n, p, qe)n→∞ ≥ max
0≤θ≤1−p

H(θ)−θH(p)−(1−θ)H(
pθ

1− θ
).

Proof: According to the definition of nonuniform codes,
we have that

t(w) = min{s|B(s, w, p) ≥ 1− qe}

Based on Hoeffding’s inequality, for any δ > 0, as w
becomes large enough, we have (p− δ)w ≤ t(w) ≤ (p+ δ)w.
In another word, for any ϵ, δ > 0, when n is large enough and
w ≥ ϵn, we have (p− δ)w ≤ t(w) ≤ (p+ δ)w.

Let w = θn and t(w) = γw, then when n is large enough,
if θ > ϵ, we have

(p− δ) ≤ γ ≤ (p+ δ)

If θ < ϵ, we call it edge effect. In this case 0 ≤ γ ≤ 1.
Now, let each codeword with Hamming weight w tolerate

t(w) errors, then

Bβ(n, p, qe) ≥ R(n, t(w), w) ≥ A(n, 2(t(w) + 1), w)

for every w with 0 ≤ w ≤ n.
Applying Gilbert Bound, we have

Bβ(n, p, qe) ≥ max
w

(
n
w

)∑t(w)
i=0

(
w
i

)(
n−w

i

)
≥ max

w

(
n
w

)
maxi∈[0,t(w)] n

(
w
i

)(
n−w

i

)
≥ max

w:
w(n−w)

n ≥t(w)

(
n
w

)
n
(

w
t(w)

)(
n−w
t(w)

)
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When n is large enough, we have

ηβ(n, p, qe)

≥ 1

n
log max

θ:(1−θ)≥γ

2(H(θ)−δ)n

n2(H(γ)+δ)θn2(H( γθ
1−θ )+δ)(1−θ)n

≥ max
θ:(1−θ)≥γ

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
)

−2δ +
1

n
log

1

n

∼ max
θ:(1−θ)≥γ

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
)

Note that when θ < ϵ for small ϵ, we have

H(θ)− θH(γ)− (1− θ)H(
γθ

1− θ
) ∼ 0

So we can ignore this edge effect. That implies that we can
write

p− δ ≤ γ ≤ p+ δ

for any θ with 0 ≤ θ ≤ 1.
Since 1−θ ≥ γ > 0, we know that for any fixed θ, H(θ)−

θH(γ)− (1− θ)H( γθ
1−θ ) is a continuous function of γ. When

n is large enough and δ is small enough, we have

ηβ(n, p, qe) & max
θ:(1−θ)≥p

H(θ)− θH(p)− (1− θ)H(
pθ

1− θ
)

This completes the proof.

Theorem 16 (Upper bound). Given 0 < p, qe < 1, we have

ηβ(n, p, qe)n→∞ ≤ max
0≤θ≤1

H((1− p)θ)− θH(p)

= H(
1

2s(p) + 1
) +

s(p)

2s(p) + 1

with s(p) = H(p)/(1− p).

Proof: Using the same notations as above. Similar as
the proof in Theorem 14, given (n, p, qe), the maximal total
number of codewords is

Bβ(n, p, qe) ≤ 1 +

n∑
w=h(0)+1

(
n

w−t(w)

)(
w

t(w)

)
=

n∑
w=h(0)

(
n

w−t(w)

)(
w

t(w)

)
≤ max

w
n

(
n

w−t(w)

)(
w

t(w)

)
When n is large enough, we have

ηβ(n, p, qe) ≤ 1

n
log max

0≤θ≤1
n
2H((1−γ)θ+δ)n

2(H(γ)θ−δ)n

= max
0≤θ≤1

H((1− γ)θ)− θH(γ)

+2δ +
1

n
log n

∼ max
0≤θ≤1

H((1− γ)θ)− θH(γ)

Note that when θ < ϵ for small ϵ, we have

H((1− γ)θ)− θH(γ) ∼ 0

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crossover probability p

E
ffi

ci
en

cy
 η

η
β

η
α

Fig. 4. Bounds to ηα(n, p, qe)n→∞ and ηβ(n, p, qe)n→∞. The dashed
curves represent the lower and upper bounds to ηα(n, p, qe)n→∞, and the
solid curves represent the lower and upper bounds to ηβ(n, p, qe)n→∞.

So we can ignore the edge effect. That implies that we can
write

p− δ ≤ γ ≤ p+ δ

for any θ with 0 ≤ θ ≤ 1.
Since for any fixed θ with 0 ≤ θ ≤ 1, H((1−γ)θ)−θH(γ)

is a continuous function of γ. When n is large enough and δ
is small enough, we have

ηβ(n, p, qe) . max
0≤θ≤1

H((1− p)θ)− θH(p)

which equals to

H(
1

2s(p) + 1
) +

s(p)

2s(p) + 1

with s(p) = H(p)/(1− p). This completes the proof.

C. Comparison of Asymptotic Efficiencies

Table I summarizes the upper bounds and lower bounds of
ηα(n, p, qe)n→∞ and ηβ(n, p, qe)n→∞ obtained in this sec-
tion. We plot them in Fig. 4. The gap between the bounds for
the two codes indicate the potential improvement in efficiency
by using the nonuniform codes (compared to using uniform
codes) when the codeword length is large. We see that the
upper bound in Theorem 16 is also the capacity of the Z-
channel, derived in [24]. It means that nonuniform codes may
be able to achieve the Z-channel capacity as n becomes large,
while uniform codes cannot.

VII. CONCLUSION

In storage systems with asymmetric errors, it is very de-
sirable to design a code such that the reliability of the worst
codeword is guaranteed and the size of the code is maximized.
This motivates us to propose the concept of nonuniform codes,
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Lower Bound Upper Bound

ηα(n, p, qe)n→∞ [1−H(2p)]I0≤p≤ 1
4

(1 + p)[1−H( p
1+p

)]

ηβ(n, p, qe)n→∞ max0≤θ≤1−p H(θ)− θH(p)− (1− θ)H( pθ
1−θ

) max0≤θ≤1 H((1− p)θ)− θH(p)

TABLE I

whose codewords can tolerate different numbers of asymmet-
ric errors depending on their Hamming weights, so that all
codewords can achieve (almost the same) high reliability. In
this paper, we give an almost explicit upper bound for the
sizes of nonuniform codes and study the asymptotic efficiency
of nonuniform codes and uniform codes, which shows the
potential performance gain by nonuniform codes. We also
present two general constructions of nonuniform codes, in-
cluding layered codes and flipping codes. Since more needs
to be known on the efficient mapping between information
bits and codewords for layered codes, and the efficiency of
flipping codes still needs improvement when p is not small,
how to design simple and efficient nonuniform codes is still
an open problem.
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